Tuning the bandgap of double perovskites

Yu Zou¹, Wenjin Yu¹, Lixiu Zhang³, Cuncun Wu^{2,†}, Lixin Xiao^{1,†}, and Liming Ding^{3,†}

¹State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China

²School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China

³Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

Citation: Y Zou, W J Yu, L X Zhang, C C Wu, L X Xiao, and L M Ding, Tuning the bandgap of double perovskites[J]. J. Semicond., 2021, 42(12), 120202. http://doi.org/10.1088/1674-4926/42/12/120202

With great achievements in efficiency, stability, and large-scale preparation of perovskite solar cells (PSCs), the commercialization of PSC is ongoing, but there is still an issue on lead toxicity. Although lead content in the device is low, the water solubility of lead salts leads to potential environmental pollution. At present, the non-lead perovskites studied include: divalent metal perovskite (e.g., Sn²⁺, Ge²⁺, Cu²⁺), trivalent metal perovskite (e.g., Bi³⁺, Sb³⁺, In³⁺), tetravalent metal double perovskite (e.g., Sn4+, Pd4+, Ti4+, Pt4+) and monotrivalent mixed double perovskite (e.g., Ag⁺ and Bi³⁺, Ag⁺ and In³⁺, Ag⁺ and Sb³⁺). Their properties are summarized in Table 1. Since the first report on non-lead double perovskite Cs₂AgBiBr₆ in 2016^[1], this material has caused extensive research in optoelectronic devices because of its long carrier lifetime^[1] and good stability^[2]. However, owing to its wide and indirect bandgap (E_{α}) (~2.0 eV), its light absorption range is narrow, which limits its application in photovoltaics. At present, the power conversion efficiency (PCE) of Cs₂AgBiBr₆ device is $\sim 3\%^{[3]}$. To enhance PCE, the E_q needs to be narrowed. The efforts in this area focus on adjusting chemical composition and physical structure (Fig. 1) to tune E_{q} .

A common attempt to tune the E_{q} of double perovskite is to adjust the chemical composition of compound $A_2B(I)B(III)X_6$.

A-site. Doping alkali metal ions like Rb⁺, K⁺, and Na⁺ made little effect on $E_{q}^{[4]}$. Chen *et al.*^[5] introduced Rb⁺ into Cs₂AgBiBr₆ to form (Cs_{1-x}Rb_x)₂AgBiBr₆ and effectively passivated the defects of double perovskite, thus increasing PCE to 1.5%. But this doping could not significantly change the E_{α} . When doping A-site to change the dimension of perovskite from 3D to 2D, the E_{α} and electronic structure can be tuned. In 2019, Mitzi et al.^[6] reported that a stable 2D double perovskite [AE2T]₂AgBil₈ was formed by using multifunctional organic molecules with a direct E_q of 2.01 eV.

X-site. For lead-based perovskites, the E_q decreases with the increasing of halogen atom radius, and similar results are also observed in double perovskites. The introduction of Cl⁻ can greatly increase E_{q} , while l⁻ doping can significantly reduce E_{g} , which is 2.77 eV (X = Cl), 1.95 eV (X = Br), and 1.75 eV (X = I) for $Cs_2AgBiX_6^{[7]}$. When X site is I, the stability for double perovskite decreases. It is difficult to prepare

Received 16 AUGUST 2021.

©2021 Chinese Institute of Electronics

Cs₂AgBil₆ experimentally, because the formation energy of $Cs_3Bi_2I_9$ is lower. As reported by Ma et al.^[8], the E_q of Cs₂NaBil₆ was relatively narrow (1.66 eV), but it can easily decompose into Cs₃Bi₂I₉, yielding a 0.42% PCE.

B-site. The structure of double perovskite consists of B(I)X₆ and B(III)X₆ with alternating octahedrons connected by vertices. Substituting B-site elements can tune Eq. Karunadasa et al.^[9] found that doping low content of toxic TI (TI+, TI³⁺) into Cs₂AgBiBr₆ to form Cs₂(Ag_{1-a}Bi_{1-b})TI_xBr₆ (0.003 < x =a + b < 0.075) can significantly reduce its E_q to 1.40 eV for Cs₂(Ag_{1-a}Bi_{1-b})Tl_{0.075}Br₆. Replacing Ag⁺ and Bi³⁺ by Tl⁺/Tl³⁺ yielded defects, leading to band-edge reconstruction. Using unstable Sn²⁺ (can be oxidized to Sn⁴⁺) to replace both Ag⁺ and Bi^{3+} can also reduce E_{q} to 1.71 eV (indirect) and 1.48 eV (direct)^[10]. These results indicate that the band-edge reconstruction caused by the lattice distortion due to B-site ion doping can tune the E_{q} of double perovskite. Mitzi *et al.*^[11] reported that the use of trivalent metal In³⁺ or Sb³⁺ can also significantly tune E_{α} , which could be increased to 2.4 eV by replacing 75% of Bi³⁺ with In³⁺. While replacing 37.5% Bi³⁺ with Sb³⁺ could reduce E_q to 1.86 eV. When using In⁺ to replace Aq⁺, it was predicted that the E_q of Cs₂InBiCl₆ (1.02 eV) and Cs₂InSbCl₆ (0.91 eV) would be very suitable for photovoltaics^[12]. However, In⁺ is extremely unstable and can be easily oxidized into In^{3+[13]}.

When using Cu^+/Cu^{2+} to replace part of Ag⁺ in Cs₂Ag-BiBr₆, there is no obvious effect on $E_{a}^{[14]}$. Cu⁺ (ionic radius 77 pm, hereafter omit) and Cu²⁺ (73 pm) are much smaller than Ag⁺ (115 pm). They can cause lattice defects, and the absorption tail extends from 610 to 860 nm. This was due to the absorption of the defect intermediate state. Similarly, Fe³⁺ (65 pm) was used to replace part of Bi³⁺ (103 pm)^[15]. Since the size of Fe³⁺ is guite different from Bi³⁺, it can easily cause lattice distortion and defects. The lattice constant was reduced from 11.27 to 11.25 Å, and Cs₂AgBi_{0.886}Fe_{0.114}Br₆ was obtained as a black crystal. Though E_a did not change obviously, the light absorption was greatly increased by defects. Recently, Gao et al.[16] demonstrated that Fe³⁺ could replace diamagnetic In³⁺ to yield Cs₂AgIn_{1-x}Fe_xCl₆ and form [FeCl₆]³⁻·[AgCl₆]⁵⁻ domains, and the connection of larger [FeCl₆]^{3-,}[AgCl₆]⁵⁻ domains leads to segregated Fe³⁺-rich phases. The E_q of Cs₂AgInCl₆ was tuned from 2.8 to 1.6 eV via Fe³⁺-alloying.

The second approach to tune E_{q} of double perovskite is to adjust the physical structure. First-principles calculations indicated that changing the order of Ag⁺ and Bi³⁺ in space can significantly reduce E_{q} . When the arrangement of Ag⁺ and

Correspondence to: C C Wu, cuncunwu@163.com; L X Xiao, Ixxiao@pku.edu.cn; L M Ding, ding@nanoctr.cn

Table 1.	Pror	oerties	of le	ad-free	perovskites.
	TIOP		UT IC	au nee	perovanices.

Structure formula	Representative	Advantage	Disadvantage
AB(II)X ₃	FASnl ₃	High absorption, high mobility	Unstable
$A_2B(IV)X_6$	Cs ₂ Snl ₆	Stable, suitable <i>E</i> g	Defect
$A_3B(III)_2X_9$	Cs ₃ Bi ₂ I ₉	Stable	Wide <i>E</i> g, defect
A ₂ B(I)B(III)X ₆	Cs ₂ AgBiBr ₆	Stable	Wide <i>E</i> g
$A_aB(III)_bX_{a+3b}$	Ag₃Bil ₆	High absorption	Phase separation, defect

Table 2.	Tuning	$E_{\rm a}$ of	double	perovskites.
----------	--------	----------------	--------	--------------

Precursor	Method	Product	E _g (eV)	Feature	Ref.
Cs ₂ AgBiBr ₆	A	$Cs_2(Ag_{1-a}Bi_{1-b})TI_xBr_6 (x = a+b)$	1.40–1.95	Toxicity of TI	[9]
Cs ₂ AgBiBr ₆	A	$Cs_2(Ag_{1-(2a+b)}Sn_a(II))(Bi_{1-b}Sn_b(IV))Br_6$	1.48 (i) and 1.71 (d)	Unstable Sn ²⁺	[<mark>10</mark>]
Cs ₂ AgBiBr ₆	A	Cs ₂ Ag(Bi _{1-x} M _x)Br ₆ (M:In,Sb)	1.86 (Sb _{0.375}) –2.28 (In _{0.75})	Sb ³⁺ decreases while In^{3+} increases E_g	[11]
Cs ₂ AgBiBr ₆	A	Cs ₂ (Ag:Cu ⁺ /Cu ²⁺)BiBr ₆	Tailing to 860 nm	Defect absorption	[14]
Cs ₂ AgBiBr ₆	A	Cs ₂ Ag(BiFe)Br ₆	Tailing to 800 nm	Defect absorption	[15]
Cs ₂ AgInCl ₆	A	Cs ₂ AgIn _{1-x} Fe _x Cl ₆	1.6–2.8	For single crystal	[<mark>16</mark>]
Cs ₂ AgBiBr ₆	B (temperature)	Cs ₂ AgBiBr ₆	Reversible		[<mark>18</mark>]
Cs ₂ AgBiBr ₆	B (temperature)	Cs ₂ AgBiBr ₆	1.72–1.98	For single crystal	[19]
Cs ₂ AgBiBr ₆	B (pressure)	Cs ₂ AgBiBr ₆	1.70 @15 GPa	Partially retainable	[20]

A: Chemical composition. B: Physical structure.

Fig. 1. (Color online) Tuning E_q of double perovskites.

 Bi^{3+} was completely disordered, the E_{q} could be reduced to 0.44 eV^[17]. Gao et al.^[18] reported that through thermallyinduced defects, as the temperature increased, the color of Cs₂AgBiBr₆ single crystal and film can change from red to black, the E_{α} decreased, but the original color of the film recovered after cooling. The finite-temperature molecular dynamics simulations indicated the synergistic effect of the incongruous bond lengths (R_{Aq-Br} and R_{Bi-Br}) fluctuations and the related electron-phonon coupling, as well as the special spinorbit coupling effect, were the cause for the thermochromism. Gao et al.^[19] increased the disorder degree of [Ag-Br₆] and [BiBr₆] octahedral by adjusting the crystallization speed of Cs₂AgBiBr₆. As the temperature increases, the disorder degree gradually increases, the lattice shrinks, initially leading to the formation of isolated defect states in the forbidden band, and finally a series of defect states, and reduced E_{α} (60 °C, 1.98 eV; 150 °C, 1.72 eV). And this reduced $E_{\rm q}$ can keep stable at room temperature. Zou et al.[20] found that high pressure can also significantly reduce E_{q} of Cs₂AgBiBr₆ single crystal. Under 15 GPa pressure, the E_q was reduced from 2.2 to 1.7 eV. When the pressure was released, the E_{α} was relatively lower than that at atmospheric pressure.

In summary, for double perovskite $Cs_2AgBiBr_6$, the effect of A-site doping on E_g is not obvious, the stability of X-site doping is intractable, and only B-site doping can significantly tune E_q . Changing the order of Ag⁺ and Bi³⁺ in space is much effective for reducing E_g (Table 2). We need further study E_g -narrowing mechanism of double perovskites and find effective methods to realize it.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61775004, 61935016). L. Ding thanks the National Key Research and Development Program of China (2017YFA0206600) and the National Natural Science Foundation of China (51773045, 21772030, 51922032, 21961160720) for financial support.

References

- Slavney A H, Hu T, Lindenberg A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc, 2016, 7, 2138
- [2] Wu C, Zhang Q, Liu Y, et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs₂AgBiBr₆ film. Adv Sci, 2018, 5, 1700759
- [3] Wang B, Li N, Wang X F, et al. Chlorophyll derivative-sensitized TiO₂ electron transport layer for record efficiency of Cs₂AgBiBr₆ double perovskite solar cells. J Am Chem Soc, 2021, 143, 2207
- [4] Keshavarz M, Debroye E, Hofkens J, et al. Tuning the structural and optoelectronic properties of Cs₂AgBiBr₆ double-perovskite single crystals through alkali-metal substitution. Adv Mater, 2020, 32, 2001878
- [5] Zhang Z, Wu C, Wang D, et al. Improvement of Cs₂AgBiBr₆ double perovskite solar cell by rubidium doping. Org Electron, 2019, 74, 204
- [6] Jana M K, Janke S M, Mitzi D B, et al. Direct-bandgap 2D silver-bismuth iodide double perovskite: The structure-directing influence of an oligothiophene spacer cation. J Am Chem Soc, 2019, 141, 7955
- [7] Creutz S E, Crites E N, Gamelin D R, et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett, 2018, 18, 1118
- [8] Zhang C, Gao L, Ma T, et al. Design of a novel and highly stable lead-free Cs₂NaBil₆ double perovskite for photovoltaic applica-

Journal of Semiconductors doi: 10.1088/1674-4926/42/12/120202 3

tion. Sustain Energy Fuels, 2018, 2, 2419

- [9] Slavney A H, Leppert L, Karunadasa H I, et al. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J Am Chem Soc, 2017, 139, 5015
- [10] Lindquist K P, Mack S A, Karunadasa H I, et al. Tuning the bandgap of $Cs_2AgBiBr_6$ through dilute tin alloying. Chem Sci, 2019, 10, 10620
- [11] Du K, Meng W, Mitzi D B, et al. Bandgap engineering of lead-free double perovskite Cs₂AgBiBr₆ through trivalent metal alloying. Angew Chem Int Ed, 2017, 56, 8158
- [12] Zhao X, Yang J, Zhang L, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc, 2017, 139, 2630
- [14] Ji F, Huang Y, Gao F, et al. Near-infrared light-responsive Cudoped Cs₂AgBiBr₆. Adv Funct Mater, 2020, 30, 2005521
- [15] Ning W, Bao J, Gao F, et al. Magnetizing lead-free halide double perovskites. Sci Adv, 2020, 6, eabb5381
- [16] Ji F, Wang F, Gao F, et al. The atomic-level structure of bandgap engineered double perovskite alloys Cs₂AgIn_{1-x}Fe_xCl₆. Chem Sci, 2021, 12, 1730
- [17] Yang J, Zhang P, Wei S, et al. Band structure engineering of Cs₂Ag-BiBr₆ perovskite through order-disordered transition: A first-principle study. J Phys Chem Lett, 2018, 9, 31
- [18] Ning W, Zhao X G, Gao F, et al. Thermochromic lead-free halide double perovskites. Adv Funct Mater, 2019, 29, 1807375
- [19] Ji F, Klarbring J, Gao F, et al. Lead-free halide double perovskite Cs₂AgBiBr₆ with decreased band gap. Angew Chem Int Ed, 2020, 59, 15191
- [20] Li Q, Wang Y, Pan W, et al. High-pressure band-gap engineering in lead-free Cs₂AgBiBr₆ double perovskite. Angew Chem Int Ed, 2017, 56, 15969

Yu Zou is a PhD student at Department of Physics, Peking University. He received his BS from Peking University in 2019. His research focuses on halide perovskite solar cells.

Cuncun Wu is a lecturer at School of Materials Science and Engineering, Hebei University of Technology. He received his PhD from Peking University in 2020. His research focuses on perovskite optoelectronic devices.

Lixin Xiao is a full professor at Department of Physics, Peking University. He is a RSC Fellow. He received his PhD from The University of Tokyo in 2000. He has been working on optoelectronic devices.

Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors.